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Abstract

This paper extends the newly developed method of reverberation-ray matrix (J. Sound Vibrat. 230(4) (2000) 743) to
the propagation of elastic waves in a layered solid. The steady state waves generated by point source (axisymmetric
problem) or a line source (plane strain problem) are expressed by the Sommerfield-weyl integrals of wave numbers. The
waves radiated from the source are reflected or refracted at the interface of two adjacent layers, and the process of
transmission and reflection is represented by a local scattering matrix; and the process of wave transmitting from one
interface to the neighbouring one is represented by a local phase matrix. The local matrices of all layers are then stacked
to form the global scattering matrix and global phase matrix of the layered medium separately. The product of these
two matrices together with a global permutation matrix gives rise to the reverberation-ray matrix R, which represents
the multi-reflected and transmitted steady state waves within the entire medium. The transient waves are then deter-
mined by another integration over the frequency, and the integrand of the double integral in frequency and wave
number, known as the ray-integrals, contains a power series of R. The ray-integrals so formulated are particularly
suitable for evaluating the transient waves involving a large number of generalized-rays by calculating the double in-
tegrals numerically as illustrated by the example of a laminated plate in this paper.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of waves in layered media was initiated in early 1940s by Ewing et al. (1948) in connection
with the project to measure and analyze the propagation of sound in shallow water of the US Atlantic
Coast. Their memoir which was published in 1948 contains an article by Pekeris who models the vertically
stratified sea water including the sandy bottom by a layered liquid with homogeneous layers of unequal
thickness. The propagation of transient waves is then represented by a double integral of the steady state
wave function, one with respect to the radial wave number k and the other with respect to the circular
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frequency w. The integration can be carried out in two procedures, one is called the normal mode method,
the other the ray method. Their method of observations, theory and analysis were soon applied to the study
of elastic waves in layered solid as summarized in the monograph by Ewing et al. (1957), and another one
by Brekhovskikh (1960).

In the integrand of double integral, the steady state wave function is composed of three parts, a har-
monic function in time 7, a function depending on the transverse coordinate x and another one depending
on the depth coordinate z. The depth function which is the solution of ordinary differential equations in
variable z, consists the product sinusoidal (hyperbolic) functions with unknown coefficients, two for sound
wave in each layer of liquid and four for axisymmetric wave in each layer of a solid. Various methods have
been proposed, including the method of transfer matrix (Thomson, 1950; Haskell, 1953), to determine these
unknown coefficients from the conditions of continuity at the interface of adjacent layers. They can all be
considered as special cases of method of propagator matrix which was proposed earlier by Volterra to solve
ordinary differential equations with variable coefficients (Gilbert and Backus, 1966). Once the unspecified
coefficients are fixed, the double integration in x and @ can be carried out by a variety of procedures as
discussed by Kennett (1983).

In this paper, we propose an alternative to the method of propagation matrix, called the method of
reverberation-ray matrix. The method originated from a study of wave propagation in a frame structure,
which is made of slender structural members, connected at both ends by pins or rigid connectors (Howard
and Pao, 1998; Pao et al., 1999). The method has been modified for investigating the propagation of sound
waves in a layered liquid (Pao et al., 2000), and the modified one is extended to study elastic waves in a
layered solid in this paper.

We discuss the formulation of the reverberation matrix in next three sections. A set of local coordinates
is introduced for each layer. The wave potential in each layer is transformed into the spectral domain by
applying double Fourier transforms for plane problems or Fourier—Hankel transform for axisymmetric
problems (Section 2). In the spectral domain, the local scattering matrix to transfer arrival waves to de-
parture waves at an interface or boundary is derived from the conditions of continuity of stresses and
displacements at the interface (Section 3). The reverberation matrix which represents the waves reverber-
ating in multilayered medium is then formed from the product of global scattering matrix S, phase matrix P
and permutation matrix U, that is R = SPU. The unknown coefficients of the depth function in the inte-
grand are then expressed in terms of the matrix product [I — R]™'s where the column matrix s represents the
waves radiated from each and every point source in the layered medium (Section 4).

In Section 5, transient waves observed at different receivers are determined by Fourier synthesizing the
steady state waves over all frequency and transverse wave numbers (inverse Fourier transform or inverse
Fourier Hankle transform). The inverse of the matrix [I — R] in the integrand of the double integral is
replaced by the power series [+ R +R>+---+R" +...] through the Neumann expansion, and the
original double integral which is singular at the poles of det[I — R] = 0 is then converted into a series of
double integrals, known as the ray-integrals, each being regular within the range of integration. Physi-
cally, the ray-integrals represent a group of partial waves which are transmitted from the source to a
receiver along specific ray paths of multiple reflections and transmissions, the first term Ls being the direct
way from the source to receiver, the second term Rs being the ray that is reflected or transmitted
(scattered) once at the interface, the third term R’s being scattered twice, etc. The ray-integrals so de-
rived are identical to those formulated by intuition in the method of generalized-rays (Pao and Gajewski,
1977), each integral can then be evaluated by applying Cagniard’s de-Hoop method, or numerical inte-
gration.

In Section 6, we show the application of the method to the evaluation of transient waves in the laminated
plate via the example of a three-layered plate. The waves are generated by a point force on the surface, and
two receivers are placed at opposite sides of the plate. Since the ray-integrals do not have poles of sin-
gularity, the double integrations in frequency and wave number are accomplished by direct numerical
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integration with a computer code for inverse Hankle transform and another one (FFT) for inverse Fourier
transform. The advantages of applying the method of reverberation matrix and the accuracy of the tran-
sient waves so calculated are discussed in the final section of conclusion.

2. Elastic waves in a layered solid
2.1. Plane strain problems

Consider a multilayered solid separated by parallel planes z =27/ (J =0,1,2,...,N), where the coor-
dinate system (x,z), in which the wave normals of the P-wave and S-wave lie, is selected and shown in Fig.
1. The plane-strain problem and anti-plane problem can be investigated separately. All sources are assumed
to locate at (0,z) on an interface between two layers. If the source is situated at interior of a layer, then an
additional interface passing the layer is added artificially to divide the original layer into two portions of
equal material properties. We shall designate the plane interface with 7,J,K, ... and layers with two cap-
ital letters. All physical quantities at the interface z = Z/ will carry the superscript J; those at the layer
bounded by two adjacent interfaces z = Z/ and z = ZX carries two superscripts JK. Thus, the mass density,
elasticity modulus in the layer are denoted by p’%, /% and p/¥; the force applied at the interface z = Z’ by
vector f”.

In this section, however, we shall omit all superscripts for wave quantities with each layer and only
discuss the plane-strain problem. Similar results will be obtained for the anti-plane problem.

For plane strain problem, the displacement field u = [u,, 0, u.] and the stress components (6., 0., 0.,) are
determined respectively from the wave potentials ¢(x,z,¢) and Y (x,z,¢) by the relations

_% oy 0 0y (1)
ux_@x oz’ uz_@z Ox
01 X
z0y 7" ; O
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Fig. 1. Geometry and coordinates in a layered solid.
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and
O = AV +2u [aa; a@;gﬁz}’
6. = IV + 2u[%2f + aa:gz} .
The wave functions ¢(x,z,¢) and (x,z,¢) satisfy the wave equations respectively
vzwzcl—%f—tf, vy 5k o)

where ¢, = [(4+2u)/p]'"* is P-wave speed, and ¢, = [u/p]'/* is S-wave speed, V2 = &?/dx? 4 0? /o2,
The Fourier transform of the function f'(x,z,¢) in time variable ¢ and the inverse Fourier transform of
F(x,z,®) are given by

F(x,z,w) = [mf(x,z, £)e dt, (4a)
1 /= ~
flx,z,0) = I /_ F(x,z,w)e ™ do. (4b)

Similarly, the Fourier transform of F(x,z, w) in space variable x and the inverse Fourier transform of
f(k,z,w) are given by

flk,z,0) = /OCF(x,z, w)e * dx, (5a)
Flxz,0) / Pl 2, )¢ dk. (5b)

Apply inverse Fourier transform in time variable #(w) and spatial variable x(k) to obtain the solutions
for the potentials ¢ and v

o(x,z,t) / / »(k,z, )e* = dk do, (6a)

V(x,z 1) / / Yk, z, )@ dk do, (6b)
where the double-transformed potentials satisfy

d*¢

dz(f-i-oc ¢ =0, a:(wz/ci_kz)l/z, (7a)

2

o ph=0. p= (/- (7b)

The solutions for the equations can be expressed respectively as

(k,2,0) = ay(k, w)e™™ + dy(k, )™, (8a)
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Yk z, ) = ay(k, w)e ¥ + d,(k, w)e”, (8b)

where @; and d; (i = p, s) are unknown coefficients. Furthermore, the twice-transformed components of the
displacements and stresses are given by

o d o o o a
i, = 1k — v _ ikla,e ™™ + dye™] + iplase " — die'’],
dz (9)
i, = — + ik = ia[—aye " + dye™] + iklae 7 + die),

Go = | (B — B + 20 Y

o | = M = B)lae™ + dpe™] + 2pklae ™ — de™]),

. . d¢ - e A A i A
6o =1 21k£ + (B — kZ)l/,] = p{2akla,e ™ — d,e™] + (B — k*)[ae ™ + d.e¥)},

dz

. dy N L
G = p| (202 — k2)p — 21k—*”] = {27 — i) [ape ™ + dpe™] — 2pklae " — e},

where k, = w/cp, ks = 0/c;.
2.2. Axisymmetric problems
For symmetric wave motion about the z-axis, the displacements are independent of the 0 coordinate.

Excluding the rotational motion, the displacement filed u = [u,, 0, u.] and stress components are determined
from two potentials ¢(r,z,¢) and ¥(r,z,¢) by the follows:

dp Y dp Y 103y
r = A ) z = Al T T AL 1
T Ta T o ror (10)
g oY
_ 72
Grr—/»VqD—i-Z,u_arz 8}’262]’
Pp By 0
S R S SRR V2 10b
R Ry = = R WA w], (106)
g Oy 1%
_ I\72 _ ___ "
0z = 4V ¢+2M_622 0z0r? r@zar}

where ¢ and  satisfy Eq. (3) with V2 = 0%/0r* + r~10/0r + 0% /022
Apply Fourier transform in time variable #(w) and spatial variable r(x) to obtain the solutions for the
potentials ¢ and :

l [o¢] . o0
o(r,z,t) :E/ e"‘“tda)/ @i, z, w)Jo(kr)k dr, (10c)
—00 0
1 o0 . o0 R
W(r,z,t) :ﬁ/ e“‘”tdw/ V(i z, w)Jo(kr)kdk. (10d)
—o0 0
The solutions for the twice-transformed potentials ¢ and lﬁ are similar with those in Egs. (8a) and (8b),
@(K,Z, CO) = &P(Ka w)eiiﬂ + aP(Ka w)eiﬂv (106)

YK,z 0) = ay(k, 0)e " + dy(i, w)e”. (10f)
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3. Scattering matrices for waves at interfaces

For simplification, the following discussion is limited in the case of plane strain problems. The method
can be parallelly extended to the case of axisymmetric problems if the cylindrical coordinates and Hankel
transform are adopted.

We restore the superscripts to all physical quantities and introduce a set of local coordinates (x’*, z/X) for
each layer above (K =J — 1) and below (K = J + 1) the interface J, as shown in Fig. 1. We have

KU = YU = x and 2K =wK - M (11)

where /'K = h%/ is the thickness of the layer JK. Within the layer JK, the two superscripts for u, p and ¢ are
interchangeable. For convenience, the parameters of medium in the jth layer are also represented by letters
with single subscripts, such as p;, u;, h;, ... etc.

3.1. Local scattering matrix at interface J

From Egs. (8a) and (8b), the potentials in the two adjacent layers at interface J are expressed respectively
by

AJ(J 1) ~J(J—-1) /=)

1oz

1) W(T=1) ig;2/V-1
J(k, 2V, w) = alV Ve + )V
Dk, 2V, 0) = @V Ve I g g, )
(12
AJ (J+1) (k U+ ,a)) a.;(]+l)e—iog,‘lz’('/+') +gg(]+l)eiqf‘|zl('171)7

1/7”“)(](,2’““), w) = dJ(J+1) e IREA ) +d:(J+1)eiﬂf+lZ/(JH)'

Associated with the time factor e’ in Eqs. (4a) and (4b), the term with unknown amplitude c?;'( rep-
resents a P-wave departing from the interface J and travelling in the positive direction of z’X; and that with
/K represents a P-wave arriving at the interface J dnd traveling in the negative direction of /X, Similarly,
dJK a SV-wave departing from the interface J and &’¥ a SV-wave arriving at the interface J. @/*, @/, /¥ and
dJK are unknown functions of x and w, which shall be determined by boundary condmons and the con-
tinuity conditions at the interface.

If a point force or a vertical line force with time function f(¢) is placed at x = 0, z = 2/, the origin of two
local coordinates, the source function may be represented by —d(x — 0)d(z — z/)f(¢). The displacements
(uy,u.) and the shear stress o,. should be continuous at the interface, but the normal stress o, will jump
across the interface. We can obtain four continuity conditions at the interface

@V (k, o,w)+a”1 (k,0,m) =

@Y (k,0,0) + &V (k,0,0) = 13)
13

Ik, 0,0) = 617D (k,0,0) = 0

&V (k,0,0) — ¢V V(k,0,0) = —F(w), J=12,...,N—1.

Substituting Egs. (9) and (12) into the previous equations, we obtain a set of equations for the un-

J(J-1) &{(JH)

known coefficients g; , d V=1 and d/ VD (1 =p, s), which is expressed in matrix form as

follows:

Ad + D' = ¢ (ko) (14)
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where 4’/ and d’ are unknowns vectors, A’ and D’ are 4 x 4 matrices, and g’ is an external force
vector, i.e.

= (&Y, gD gV dJ(JH))T
P 7 s ' %p 9
&= ;(J 1) 7a;SJJ o) ;(J+l ,d;/ J+1))T7
[ —k _ﬁj k ﬁj+] |
O " o y
o :uj(ﬁj — k) _2%]{[3 _.“j+1(ﬁ/+1 — k) 201k By ’
ko, = (B — k) 2wk (B — k)
ok -, k Bu
D — —a; —k %1 k
o .“,(ﬁ kz) 2.ujkﬁj :“1+1(ﬁ,+1 kz) _2ﬂj+1kﬁj+1 ’
2ukor; _ﬂj(ﬁ? — k) =245 ko .“j+1(/3,2-+1 — k) |

& (k, ) = (0,0,0, —F (o))"

Obviously, both components of the force vector vanish when no source is at the interface. Solving d’ in
terms of unknowns vector a’ and a given source vector g/, we find

d =S’a’ +§(k,w), J=1,2,...,N—1, (15)
where

pp Sp PP
Ry R TG, (+1))

ps SS ps SS
SJ _ _(Dj)flAJ _ R RJJ T(,H’I)J T/+l (16)
N N Tpp % = R R™P
s+ Ligey Burngeny Bgrngen
ps Pp
Ty Tigeny Rengy RGngy
and
§ (k, ) = (D) ' (k, ). (17)

The matrix S’ is called the scattering matrix at Jth interface, the element of which relates an incident
wave (arrival) to the transmitted or reflected wave (departure) in Jth interface. The §’ is called the source
wave vector, which represents the waves emitted by the source at the interface. The scattering of waves at
the interface is shown in Fig. 2. The reflection and transmission coefficients in the matrix S’ are given by

33 3 J(I-1)
G970 d; 4,

s
~F(FA)
& x\
~ FI(I+1)
aJ(.nl) 7 d’

»

5 I(I+1)

a;v(.ul) d;

Fig. 2. Scattering of waves at the interface J.

J

/
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R = [(Iy = I3)(ma 4 my) — (I + La) (m1 — m3)]/ 4,
RP = 2¢(myly — Iymy)/ A,

TP = 2(my + my)(kly — f112)/kA,

TP =2¢(ly + 1y)(oymy — kmy) [k A,

R® = 2¢(msly — Izmy)/ 4,

R® = [(lh + I3)(ms — my) — (14 = o) (my + m3)]/ 4,
T = 2¢e(ms + my) (B, 1, — kI)] kA,

7% =2(1) + I;)(oyms — kmy)]|/kA,

where

A= (I + B)(my + my) + (I + 1s) (my + m3).

The elements /y, [, ..., my may be expressed in terms of shear modulus x; and wave numbers k, «;, f; as
defined in Egs. (7a) and (7b) where the subscript i(= 1,2) is appended to indicate the source (1) and the
adjacent (2) layer:

L=k — By) — 28,
L= k/.Bl [ﬁ(kz - ﬁ%) - (kz - ﬁ%)]»
Iy = o/ [(k* — B7) — 20k%),
Iy = 2kar(1 — ),
my = 2kB,(1 — i),
my = B/ B[k — By — 2K7),
my = kjou[A(K* — B3) — (K = )],
me = (k> — ) — 20,
where i = p,/u;. The factor ¢ is +1 or —1 according to the downgoing or upgoing incident wave.

When the media of layer J and layer (J + 1) are same, nonzero elements of the matrix S’ are only
TppItjthT; la;/elréd solid is bounded at the top, z = Z° = 0, and at the bottom, z = ZV, both the wave vectors a
and d degenerate into a vector with two elements. The scattering matrix S and S" also degenerate into a
4 x 4 matrices. Particularly, in the case that the top is a free surface and the bottom is a rigid plane, they can
be derived by taking appropriate limit values of density and shear wave speed for one adjacent layer, zero

density and zero speed for upper layer of the free surface, and infinite density and infinite wave speed for

lower layer of the rigid plane. The limit values are
d’ =8%° +8°(k, ),
g=8a s o) (18)
d" =S"a" +§V(k, w).

The transmission coefficients are zero and the reflection coefficients at a free surface are
RP = [4iPap — (K — f°)’]/4, R® =R,
R™ = edko(k® — )/ 4, R® = 4ekp(> — B°)/ 4,

where 4 = 4k%af + (k* — ﬁz)z.
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While the transmission coefficients are zero and the reflection coeflicients at a fixed surface are

R = (af —k*)/4, R®=R™,
S =2ko/A, RP = -2kB/A,

where 4 = aff + k2.

If a line of vertical forces acts at the free surface, the continuity condition will be replaced by the
boundary condition, o,, = —d(x)f(¢) and o,, = 0 at z = 0. If there is no point force or line of vertical force
at the rigid surface, the source wave vector §V vanishes.

If the bottom plane z = Z"~! is bounded by a semi-infinite space, we let the plane z = Z" recede to
infinity and the thickness 4, approach infinite. From the radiation condition, the wave numbers in the semi-

\/ k2 — @?/(c,); and B, = \/k* — w?/(c,)’, and the wave amplitude

") must vanish. The elements of the 4 x 4 scattering matrix S” ' should be

infinite space becomes imaginary, a, =

dWN DN gW=DN GNN=1) and V-

modified accordingly.

3.2. Global scattering matrix for the layered solid

Combining 4N equations in Egs. (17) and (18), we can construct a system of equations for the entire

layered solid in the following form:
d s 0 0 0 07/ §0
d' 0o s o0 -~ o0 of]al §!
& 0 0 8 -~ 0 o0]|]|a §
. = . +1. (19)
e 0 0 0 st o || v V!
d" 0 0 0 0o s'l\a¥ v
In compact notation, the previous equation is written as
d = Sa +§(k, ). (20)

The vector with 4N elements, d, which is named the global departing wave vector, represents completely
waves departing from all interfaces downward and upward, and the vector a, which is named the global
arriving wave vector, represents completely waves arriving at all interfaces upward and downward. The
square matrix S that is a block-diagonal matrix of dimension 4N is called the global scattering matrix. The
vector § with 4N elements, which is called the global source vector, represents waves emitted from sources
located at x=0,z=2/ (J=0,1,2,...,N).

Notice that two local coordinates (x'V~V Z/U=1) and (¥’V*D VD) are used to analyze waves
arriving and departing from the same interface, the amplitude coefficients are treated separately from
the phase functions. In this section, the elements of S’ represent the reflection or transmission co-
efficients for waves incident at the interface J are the same as those calculated from a single coor-
dinate. Since both vectors 4 and d are unknown quantities, we need an additional equation related d
to a.
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4. Reverberation matrix
4.1. Phase matrix

The additional equation is supplemented by first noting that a wave departing from one side of the layer
becomes the wave arriving at another side of the same layer. The amplitudes for the waves at both sides,
however, differ by a phase shift factor as follows:

&JP(J—I) _ em,-h,-&v}()J—l)J7 &1(171) _ eiﬁjh,-c;;s(J—l)J’
(21)
EIIJ,(J—I) _ efizx/-h‘,'dl(oJfl)J L}SJ(FU e*i/?jhjg,ngl)J7 J=12...,N—1.

b

Eq. (21) can be expressed by & = P(hj)&’ , where the local phase matrix is

eiatj/’l, 0
P(hj) = < 0 eiﬂ,h/->'

We introduce a new local vector at Jth interface, d”, and a new global vector d* for the departing
waves as

)

Ski o GU-1)J JU-1)J U+ JU+DINT
47 = (d  d A ,d ) )
&* — (3*0’3*1’&1*27 o ’d*(N—l)7g*N)T7

here d = {d.°,d)°}", & = {d{"""",d""""}". Furthermore, all elements of wave vector a are related to
those of the vector d* as

a="P(k,ho)d, (23)
where total phase shift matrix P(k, 4, w) or P(h) (4N x 4N) is a block-diagonal matrix, which is given by

"P(h) 0 T

0
0 P(h)
P(h) = : (24)
0 P(h,) 0
i 0 P(h,) |

4.2. Permutation matrix
The global vectors d* and d contain the same elements but sequenced being different order. We may
express this equivalence through a permutation matrix U,
d = ud, (25)

where U is a 4N x 4N block-diagonal matrix composed of N same 4 x 4 sub-matrix u and other vanishing
elements as

u 0 --- 0 0010
0w - 0 00 0 1
U=1. .. > "=11 00 0
00 --- u 01 0 0
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4.3. Reverberation matrix

Substituting Eq. (25) into Eq. (23), we find the second equation that relates the vectors a and d as

a=P(h)Ud (26)
Solving Egs. (20) and (26) simultaneously, we finally obtain

d=[I—R] sk, ), (27)

a =P(h)U[Il — R] 's(k, ), (28)
where we have introduced the reverberation matrix R defined by

R(k, ®) = SP(h)U. (29)

The matrix [I — R(k, w)]”" relates the response of the layered medium to the excitation $(k, ) in the
frequency-wave number domain. The dispersion relation for the resonant waves in the layered medium is
given by

det[I — R(k,w)] = 0. (30)

The determinant in Eq. (30) which is based on evaluation of scattering waves at each interface is different
from that derived by Thomson (1950) and Haskell (1953) method which is based on evaluation of the wave
propagating from one interface to another. They should, however, yield the same numerical results for the
dispersion relations in w—k plane.

The frequency response for monochromatic waves in the layered medium is determined by completing

inverse Fourier transform in Eqgs. (6a) and (6b), after substituting of a and d into Eq. (9). The transient
response of the same medium is determined by completing inverse Fourier transform.

5. Transient waves in the layered medium

Once the coefficient vectors d and a are known from Egs. (27) and (28), the complete list of displacements
and stresses in frequency domain will be expressed as

o~

W (k,z,w) = B(k, z,»)][1 - R(k, w)]"'§(k, w), .
where

Wik,z,0) = {W(k, 2, ), w(k, 2%, @), ..., w(k, 28V w0), vk, 250, )T,

W= (i, Gy 62)", 2V = By — 2V

and vertical coordinate vector of receivers

z= {22222 .. 7Z(N*])N,ZN(N*”}T. (32)
The matrix B, which is called the receiver matrix, is combined by the coefficients of the wave vectors in
Eq. (9).

Applying twice inverse Fourier transforms for variables x and ¢, we can thus obtain the transient re-
sponses at NN receivers to the sources, i.e.

o0

1 4 © .
W(X, z, t) = w / e ! dw/ W(k, Z, (U)elkx dk (33)
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It is assumed that no two receivers are located in same layer. We rewrite Eq. (33) in detail as

W(x,z,t) = ﬁ /_ " e de /_ N B(k,z,w)[I — R(k, )] '$(k, w)e™* dk. (34)

oo o0

For each element of wave vectors in Eq. (34), the double integral representation of the wave displacements
and stresses can be calculated by either the traditional spectra method or the ray method, both first were
proposed by Pekeris (1955).

5.1. Generalized ray-integrals

The method of reverberation-ray matrix is particularly suitable for ray method, if we expand the transfer
function in a Neumann series

M-R] ' =T+R+R>+-- +RY 4 [I - R 'R¥* (35)

Substituting Eq. (35) into Eq. (34),

M
Wix,z, 1) = > W (x,2,0) + W'V (x,2,1), (36)
m=0
where
1 o o0 .
W (x,z,1) = —— e do [ Bk,z,0)R"$(k, w)e dk 37
(2n)*
T 0 oo
and
WM (x 7, 1) =G / el / B(k,z, »)[I — R]"'RM*1§(k, w)e* dk. (38)
T —00 —00

The integrals in the summation can thus be evaluated term by term to obtain the “generalized-ray so-
lution”. W (x,z,1), the integrand of which have factor R’, contains the waves originally generated by the
applied forces, which propagate away from the sources to the receivers at (x,z). W“)(x, z,t) , the integrand
of which has factor R, contains the first set of reflections and transmissions of the source waves in the
layered solid. In general, W™ (x,z,1), the integrand of which have factor R”, contains the set of m times
reflections and transmissions of the sources waves in the layered solid. The double ray integrals can be
calculated by applying the Cagniard method or by numerical integration (Cagniard, 1939; Miiller, 1968,
1969; Pao and Gajewski, 1977).

To illustrate the ray paths for waves propagating from the source to a receiver, we show in Fig. 3 the
R’ R',R% R?,R* R’ groups in the top three layers of layered medium. The source which generated both P-
waves and S-waves is applied at the origin and a receiver is situated somewhere in the middle of first layer.
The Fig. 4a shows the first group R’ and second group R', the latter being reflected once at the free surface.
Fig. 4b, ¢ and d show the third group R?, the fourth group R* and the fifth group R* respectively. Fig. 4e
shows the sixth group R’ that is composed of four subgroups, each ray in the group being reflected or
diffracted (transmitted) five times. Since there is a mode conversion, P to S or S to P, at each reflection or
diffraction, there are 4 x 2% = 256 rays in this group. The partial wave along each ray path in a group is
represented by one ray integral in Eq. (33), which can be evaluated numerically.
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Fig. 3. Rays with reverberations: (a) first ray group for R’ an_d second ray group for R', (b) third ray group for R?, (c) fourth ray group
for R®, (d) fifth ray group for R*, (e) sixth ray group for R°.

5.2. Fast Hankel transform and fast Fourier transform

The double-integrals for the generalized rays are computed by applying the fast Hankel transform and
the fast Fourier transform for axisymmetric problems. The fast Fourier transform is known. Here we in-
troduce the fast Hankel transform only.

The Hankel transform is defined as

r) = / £ (k)Jo(kr)k dk. (39)
0
Let r = roe*, k = kpe™, then substitute them into the formula (39), we have
flroe®) = k2 / e ¥ f (ree™)Jo(rokoe™ ™) dy. (40)
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Fig. 4. A laminate with a source at (0, 0) and receivers at A (2.39 h, 0.05 h) and B (2.39 h, 2.95 h).

The right side of the above formula is considered as a convolution of two functions e 2 f(re ™) and
ki Jo(rokoe*), which can be calculated approximately by the numerical algorithm based on FFT. Thus we can
obtain N discrete samples approximately as

N
f(roejé):meCj_m, j:07"'7N_17 (41)
m=0

where N is the integer power of 2, x,y = jo, j=0,...,N — 1.

by = { 2’_2,,,5/;(%6_,,,5)’ Z _ O,].v.,.',.].\/’ 711’, and ¢,_; = k2oJo(rokoe™ 7).

According to Sample theorem and accuracy request, parameters ry, ko, N, d will be chosen. In general, we
can choose 7y = Fmax, Fmin = € V. ko = knaxs Kmin = koe® ™2, where ry, and 7y, are minimum and
maximum of r, kp, and k. are minimum and maximum of k. They must satisfy the constrain conditions:
Fmaxkmin0 < T and ryinknaxd < 7. For the inverse Hankel transform of the integral Egs. (10¢) and (10d) can
be computed by using FHT. Based on the above algorithm, a program is made to compute transient re-
sponse in the stratified solids.

6. Waves in a three layered laminate—an example

Recently, Achenbach and Xu (1999) analyzed point-axisymmetric waves in a plate using elastodynamic
reciprocity. An appropriate orthogonality relation with a dummy wave mode determines the coefficients of
an expansion in Lamb wave modes of the wave motion generated in an infinite elastic layer by a point load
normal to the faces of the plate. In this paper, a laminated plate of three layers with equal thickness #,
shown in Fig. 4, is considered as an example. The top and bottom layers are made of the same material with
Lame constants 4;, ; (4; = g, in value), and mass density p,. The middle layer is more rigid with 4, = 24,,
Ay = I, and p, = p,. A vertical force of magnitude F, and Heaviside function of time, —FyH (¢)o(r)/2mnr,
acts at a point of the top surface, ry = 0, zo = 0. Two receivers are set at points A (2.39 h, 0.05 h) and B
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Fig. 5. Displacement u, at receiver A: (a) the first ray group, (b) the fourth ray group, (c) the sixth ray group, (d) summation of first
nine ray groups (more 7000 rays).
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Fig. 6. Displacement u, at receiver B: (a) the third ray group, (b) summation of first nine ray groups (more 7000 rays).

(2.39 h, 2.95 h) respectively. The responses that the normalized vertical displacement U, = u,/(Fy/u,mth;)
varies with the normalized time t = ¢,#/h are shown in Figs. 5 and 6, where ¢? = (1, 4+ 2u,)/p;.

Fig. 5a shows the first ray group directly from the source to the receiver A. The P- and S-wave arrive at
the receiver A respectively when © = 2.39 and © = 4.14, the first peak appears at t ~ 4.50, which means the
arrival of the Rayleigh surface wave. The result is similar to that shown by Pekeris (1955) who calculated
the exact surface response of a half space due to a point force applied at the surface. Our result does not
show the sharp rise and fall of the displacement at the arrival time of Rayleigh surface wave because the
receiver A is slightly below the free surface. The response due to partial waves of the fourth group for R3



5462 X.-Y. Su et al. | International Journal of Solids and Structures 39 (2002) 5447-5463

and the sixth for R> are shown respectively in Fig. 5b and c. The paths of rays from the source to the
receiver A are similar with those shown in Fig. 3¢ and e. Each ray is identified by the mode of each segment
(P or S) and the layer (subscript 1, 2, or 3). The ray of the fourth group with two downward modes, p;, p,
and two upward modes P,, Py, arrives at the receiver A first at t = 3.96. Similarly, the sixth ray group
contains 4 x 2% generalized rays with six wave segments from the source to the receiver A. The first arrival
ray in this group is the ray with modes, p,p,P,p,P,P;, here P-wave speed in the layer 2 is twice of the P-
wave speed in layers 1 and 3. The normalized arrival time is T = 5.64. The summation of the first nine
groups is shown in Fig. 5d, which is the summation of more than 7000 generalized rays.

In the Fig. 6, the normalized displacement at the receiver B is shown. The Fig. 6a exhibits the third ray
group arriving at B point, which includes eight rays from the source to the receiver B. The p,p,p; wave
arrives at B point at T = 3.43. The summation of the first nine ray groups arriving at the point B contains
almost 7000 rays.

For the displacement on or near the top surface of plate, the first ray group includes P-wave, S-wave and
Rayleigh wave. The k-domain response for Rayleigh wave at a fixed frequency will asymptotes to a con-
stant value when k approaches to infinity (Weaver et al., 1996), so the computational truncation by FFT
and FHT will make some error for the first ray group of response on or near the top surface of plate. It is
the reason that there exists a small signal before the arrival of the P wave in Fig. 5a. In the Fig. 6, the similar
sinuousness in the response near the bottom does not appear.

7. Conclusion

In this paper we have extended the method of reverberation-ray matrix, which was developed originally
for a framed structure (Howard and Pao, 1998) and modified for acoustic (dilatation, P wave) in layered
liquid (Pao et al., 2000), to analyze elastic waves in layered solid. The additional consideration of distor-
tional waves (S-waves) presents low difficulty in the mathematical formulation of the matrix. The final
expressions for the transient waves in the entire medium are expressed in the form of double integrals over
the frequency and transverse wave numbers (Egs. (36)—(38)), and the integrand contains the matrix
[I—R]'s, where R is the reverberation matrix and s is a column matrix representing waves radiated from a
point or a line source. Such a formulation enables one to expand the inverse of matrix [I — R] into a power
series of R, and to convert the double integral with poles to a series of integrals, known as the ray-integrals.
Each term of ray-integrals which is regular within the range of integration represents a group of partial
waves transmitting from the source to a receiver along a multi-reflected ray-path (including P to S and S to
P mode conversion). Each ray-integral in expansion can then be identified with the ray-integrals in series of
generalized-rays, which could be evaluated precisely by applying the Cagniard’s de-Hoop method (Pao and
Gajewski, 1977). With the advance of digital computer and numerical method, the ray-integrals, a double
integral in frequency and wave number, can be evaluated numerically by applying an algorithm (FHT) in
inverse Hankel transform and another one (FFT) in inverse Fourier transform.

The major advantage of applying the reverberation-ray matrix is to have all partial waves that are
propagating from the source to a receiver along all possible paths grouped systematically, and to have them
sorted automatically into ordered groups according to the power of RY, the numbers of scatterings at
interfaces of the layered solid. The systematic sorting of the rays groups in matrix form renders the method
very effective in the computer programming for calculating large number of ray-integrals. This is illustrated
by the example of a three-layered laminated plate under the impact of a vertical force at the surface.
Transient responses at the opposite side of the plate are determined by numerically evaluating nine ray
groups including Is, Rs, R%s, ..., R®%. As large as 7000 number of rays are summed and then integrated
numerically each time. It would be unthinkable to handle such a large number of generalized-ray integral
by applying the Cagniard’s de-Hoop method.
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