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Abstract

This paper extends the newly developed method of reverberation-ray matrix (J. Sound Vibrat. 230(4) (2000) 743) to

the propagation of elastic waves in a layered solid. The steady state waves generated by point source (axisymmetric

problem) or a line source (plane strain problem) are expressed by the Sommerfield-weyl integrals of wave numbers. The

waves radiated from the source are reflected or refracted at the interface of two adjacent layers, and the process of

transmission and reflection is represented by a local scattering matrix; and the process of wave transmitting from one

interface to the neighbouring one is represented by a local phase matrix. The local matrices of all layers are then stacked

to form the global scattering matrix and global phase matrix of the layered medium separately. The product of these

two matrices together with a global permutation matrix gives rise to the reverberation-ray matrix R, which represents

the multi-reflected and transmitted steady state waves within the entire medium. The transient waves are then deter-

mined by another integration over the frequency, and the integrand of the double integral in frequency and wave

number, known as the ray-integrals, contains a power series of R. The ray-integrals so formulated are particularly

suitable for evaluating the transient waves involving a large number of generalized-rays by calculating the double in-

tegrals numerically as illustrated by the example of a laminated plate in this paper.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of waves in layered media was initiated in early 1940s by Ewing et al. (1948) in connection

with the project to measure and analyze the propagation of sound in shallow water of the US Atlantic

Coast. Their memoir which was published in 1948 contains an article by Pekeris who models the vertically

stratified sea water including the sandy bottom by a layered liquid with homogeneous layers of unequal

thickness. The propagation of transient waves is then represented by a double integral of the steady state
wave function, one with respect to the radial wave number j and the other with respect to the circular
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frequency x. The integration can be carried out in two procedures, one is called the normal mode method,
the other the ray method. Their method of observations, theory and analysis were soon applied to the study

of elastic waves in layered solid as summarized in the monograph by Ewing et al. (1957), and another one

by Brekhovskikh (1960).
In the integrand of double integral, the steady state wave function is composed of three parts, a har-

monic function in time t, a function depending on the transverse coordinate x and another one depending

on the depth coordinate z. The depth function which is the solution of ordinary differential equations in

variable z, consists the product sinusoidal (hyperbolic) functions with unknown coefficients, two for sound

wave in each layer of liquid and four for axisymmetric wave in each layer of a solid. Various methods have

been proposed, including the method of transfer matrix (Thomson, 1950; Haskell, 1953), to determine these

unknown coefficients from the conditions of continuity at the interface of adjacent layers. They can all be

considered as special cases of method of propagator matrix which was proposed earlier by Volterra to solve
ordinary differential equations with variable coefficients (Gilbert and Backus, 1966). Once the unspecified

coefficients are fixed, the double integration in j and x can be carried out by a variety of procedures as
discussed by Kennett (1983).

In this paper, we propose an alternative to the method of propagation matrix, called the method of

reverberation-ray matrix. The method originated from a study of wave propagation in a frame structure,

which is made of slender structural members, connected at both ends by pins or rigid connectors (Howard

and Pao, 1998; Pao et al., 1999). The method has been modified for investigating the propagation of sound

waves in a layered liquid (Pao et al., 2000), and the modified one is extended to study elastic waves in a
layered solid in this paper.

We discuss the formulation of the reverberation matrix in next three sections. A set of local coordinates

is introduced for each layer. The wave potential in each layer is transformed into the spectral domain by

applying double Fourier transforms for plane problems or Fourier–Hankel transform for axisymmetric

problems (Section 2). In the spectral domain, the local scattering matrix to transfer arrival waves to de-

parture waves at an interface or boundary is derived from the conditions of continuity of stresses and

displacements at the interface (Section 3). The reverberation matrix which represents the waves reverber-

ating in multilayered medium is then formed from the product of global scattering matrix S, phase matrix P
and permutation matrix U, that is R � SPU. The unknown coefficients of the depth function in the inte-

grand are then expressed in terms of the matrix product ½I� R��1s where the column matrix s represents the
waves radiated from each and every point source in the layered medium (Section 4).

In Section 5, transient waves observed at different receivers are determined by Fourier synthesizing the

steady state waves over all frequency and transverse wave numbers (inverse Fourier transform or inverse

Fourier Hankle transform). The inverse of the matrix I� R½ � in the integrand of the double integral is
replaced by the power series ½Iþ Rþ R2 þ � � � þ RN þ � � �� through the Neumann expansion, and the
original double integral which is singular at the poles of det½I� R� ¼ 0 is then converted into a series of
double integrals, known as the ray-integrals, each being regular within the range of integration. Physi-

cally, the ray-integrals represent a group of partial waves which are transmitted from the source to a

receiver along specific ray paths of multiple reflections and transmissions, the first term Is being the direct
way from the source to receiver, the second term Rs being the ray that is reflected or transmitted
(scattered) once at the interface, the third term R2s being scattered twice, etc. The ray-integrals so de-
rived are identical to those formulated by intuition in the method of generalized-rays (Pao and Gajewski,

1977), each integral can then be evaluated by applying Cagniard�s de-Hoop method, or numerical inte-
gration.
In Section 6, we show the application of the method to the evaluation of transient waves in the laminated

plate via the example of a three-layered plate. The waves are generated by a point force on the surface, and

two receivers are placed at opposite sides of the plate. Since the ray-integrals do not have poles of sin-

gularity, the double integrations in frequency and wave number are accomplished by direct numerical
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integration with a computer code for inverse Hankle transform and another one (FFT) for inverse Fourier

transform. The advantages of applying the method of reverberation matrix and the accuracy of the tran-

sient waves so calculated are discussed in the final section of conclusion.

2. Elastic waves in a layered solid

2.1. Plane strain problems

Consider a multilayered solid separated by parallel planes z ¼ ZJ (J ¼ 0; 1; 2; . . . ;N ), where the coor-
dinate system ðx; zÞ, in which the wave normals of the P-wave and S-wave lie, is selected and shown in Fig.
1. The plane-strain problem and anti-plane problem can be investigated separately. All sources are assumed
to locate at ð0; zÞ on an interface between two layers. If the source is situated at interior of a layer, then an
additional interface passing the layer is added artificially to divide the original layer into two portions of

equal material properties. We shall designate the plane interface with I ; J ;K; . . . and layers with two cap-
ital letters. All physical quantities at the interface z ¼ ZJ will carry the superscript J; those at the layer

bounded by two adjacent interfaces z ¼ ZJ and z ¼ ZK carries two superscripts JK. Thus, the mass density,

elasticity modulus in the layer are denoted by qJK , kJK and lJK ; the force applied at the interface z ¼ ZJ by

vector fJ .

In this section, however, we shall omit all superscripts for wave quantities with each layer and only
discuss the plane-strain problem. Similar results will be obtained for the anti-plane problem.

For plane strain problem, the displacement field u ¼ ½ux; 0; uz� and the stress components (rxx; rxz; rzz) are

determined respectively from the wave potentials uðx; z; tÞ and wðx; z; tÞ by the relations

ux ¼
ou
ox

� ow
oz

; uz ¼
ou
oz

þ ow
ox

ð1Þ

Fig. 1. Geometry and coordinates in a layered solid.
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and

rxx ¼ kr2u þ 2l o2u
ox2

�
� o2w
oxoz

�
;

rxz ¼ l 2
o2u
oxoz

�
þ o2w

ox2
� o2w

oz2

�
;

rzz ¼ kr2u þ 2l o2u
oz2

�
þ o2w
oxoz

�
:

ð2Þ

The wave functions uðx; z; tÞ and wðx; z; tÞ satisfy the wave equations respectively

r2u ¼ 1

c2p

o2u
ot2

; r2w ¼ 1

c2s

o2w
ot2

; ð3Þ

where cp ¼ ½ðk þ 2lÞ=q�1=2 is P-wave speed, and cs ¼ ½l=q�1=2 is S-wave speed, r2 ¼ o2=ox2 þ o2=oz2.
The Fourier transform of the function f ðx; z; tÞ in time variable t and the inverse Fourier transform of

F ðx; z;xÞ are given by

F ðx; z;xÞ ¼
Z 1

�1
f ðx; z; tÞeixt dt; ð4aÞ

f ðx; z; tÞ ¼ 1

2p

Z 1

�1
F ðx; z;xÞe�ixt dx: ð4bÞ

Similarly, the Fourier transform of F ðx; z;xÞ in space variable x and the inverse Fourier transform of
f̂f ðk; z;xÞ are given by

f̂f ðk; z;xÞ ¼
Z 1

�1
F ðx; z;xÞe�ikx dx; ð5aÞ

F ðx; z;xÞ ¼ 1

2p

Z 1

�1
f̂f ðk; z;xÞeikx dk: ð5bÞ

Apply inverse Fourier transform in time variable tðxÞ and spatial variable xðkÞ to obtain the solutions
for the potentials u and w

uðx; z; tÞ ¼ 1

ð2pÞ2
Z 1

�1

Z 1

�1
ûuðk; z;xÞeiðkx�xtÞ dkdx; ð6aÞ

wðx; z; tÞ ¼ 1

ð2pÞ2
Z 1

�1

Z 1

�1
ŵwðk; z;xÞeiðkx�xtÞ dkdx; ð6bÞ

where the double-transformed potentials satisfy

d2ûu
dz2

þ a2ûu ¼ 0; a ¼ ðx2=c2p � k2Þ1=2; ð7aÞ

d2ŵw
dz2

þ b2ŵw ¼ 0; b ¼ ðx2=c2s � k2Þ1=2: ð7bÞ

The solutions for the equations can be expressed respectively as

ûuðk; z;xÞ ¼ âapðk;xÞe�iaz þ d̂dpðk;xÞeiaz; ð8aÞ
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ŵwðk; z;xÞ ¼ âasðk;xÞe�ibz þ d̂dsðk;xÞeibz; ð8bÞ
where âai and d̂di (i ¼ p, s) are unknown coefficients. Furthermore, the twice-transformed components of the
displacements and stresses are given by

ûux ¼ ikûu � dŵw
dz

¼ ik½âape�iaz þ d̂dpeiaz� þ ib½âase�ibz � d̂dseibz�;

ûuz ¼
dûu
dz

þ ikŵw ¼ ia½�âape�iaz þ d̂dpeiaz� þ ik½âase�ibz þ d̂dseibz�;
ð9Þ

r̂rxx ¼ l ðk2
"

� b2Þûu þ 2ik dŵw
dz

#
¼ lfðk2 � b2Þ½âape�iaz þ d̂dpeiaz� þ 2bk½âase�ibz � d̂dseibz�g;

r̂rxz ¼ l 2ik
dûu
dz

"
þ ðb2 � k2Þŵw

#
¼ lf2ak½âape�iaz � d̂dpeiaz� þ ðb2 � k2Þ½âase�ibz þ d̂dseibz�g;

r̂rzz ¼ l ð2a2
"

� j2s Þûu � 2ik dŵw
dz

#
¼ lfð2a2 � j2s Þ½âape�iaz þ d̂dpeiaz� � 2bk½âase�ibz � d̂dseibz�g;

where jp ¼ x=cp, js ¼ x=cs.

2.2. Axisymmetric problems

For symmetric wave motion about the z-axis, the displacements are independent of the h coordinate.
Excluding the rotational motion, the displacement filed u ¼ ½ur; 0; uz� and stress components are determined
from two potentials uðr; z; tÞ and wðr; z; tÞ by the follows:

ur ¼
ou
or

þ o2w
oroz

; uz ¼
ou
oz

� o2w
or2

� 1
r
ow
or

; ð10aÞ

rrr ¼ kr2u þ 2l o2u
or2

�
þ o3w
or2oz

�
;

rrz ¼ l 2
o2u
oroz

�
þ 2 o3w

oroz2
� o

or
r2w

�
;

rzz ¼ kr2u þ 2l o2u
oz2

�
� o3w
ozor2

� 1
r
o2w
ozor

�
;

ð10bÞ

where u and w satisfy Eq. (3) with r2 ¼ o2=or2 þ r�1o=or þ o2=oz2.
Apply Fourier transform in time variable tðxÞ and spatial variable rðjÞ to obtain the solutions for the

potentials u and w:

uðr; z; tÞ ¼ 1

2p

Z 1

�1
e�ixt dx

Z 1

0

ûuðj; z;xÞJ0ðjrÞjdj; ð10cÞ

wðr; z; tÞ ¼ 1

2p

Z 1

�1
e�ixt dx

Z 1

0

ŵwðj; z;xÞJ0ðjrÞjdj: ð10dÞ

The solutions for the twice-transformed potentials ûu and ŵw are similar with those in Eqs. (8a) and (8b),

ûuðj; z;xÞ ¼ âapðj;xÞe�iaz þ d̂dpðj;xÞeiaz; ð10eÞ

ŵwðj; z;xÞ ¼ âasðj;xÞe�ibz þ d̂dsðj;xÞeibz: ð10fÞ
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3. Scattering matrices for waves at interfaces

For simplification, the following discussion is limited in the case of plane strain problems. The method

can be parallelly extended to the case of axisymmetric problems if the cylindrical coordinates and Hankel
transform are adopted.

We restore the superscripts to all physical quantities and introduce a set of local coordinates ðxJK ; zJKÞ for
each layer above (K ¼ J � 1) and below (K ¼ J þ 1) the interface J, as shown in Fig. 1. We have

xJðJ�1Þ ¼ �xJðJþ1Þ ¼ X and zJK ¼ hJK � zKJ ; ð11Þ

where hJK ¼ hKJ is the thickness of the layer JK. Within the layer JK, the two superscripts for l, q and c are
interchangeable. For convenience, the parameters of medium in the jth layer are also represented by letters

with single subscripts, such as qj; lj; hj; . . . etc.

3.1. Local scattering matrix at interface J

From Eqs. (8a) and (8b), the potentials in the two adjacent layers at interface J are expressed respectively

by

ûuJðJ�1Þðk; zJðJ�1Þ;xÞ ¼ âaJðJ�1Þp e�iajz
JðJ�1Þ þ d̂dJðJ�1Þ

p eiajz
JðJ�1Þ

;

ŵwJðJ�1Þðk; zJðJ�1Þ;xÞ ¼ âaJðJ�1Þs e�ibjz
JðJ�1Þ þ d̂dJðJ�1Þ

s eibjz
JðJ�1Þ

;

ûuJðJþ1Þðk; zJðJþ1Þ;xÞ ¼ âaJðJþ1Þp e�iajþ1z
JðJþ1Þ þ d̂dJðJþ1Þ

p eiajþ1z
JðJ�1Þ

;

ŵwJðJþ1Þðk; zJðJþ1Þ;xÞ ¼ âaJðJþ1Þs e�ibjþ1z
JðJþ1Þ þ d̂dJðJþ1Þ

s eibjþ1z
JðJþ1Þ

:

ð12Þ

Associated with the time factor e�ixt in Eqs. (4a) and (4b), the term with unknown amplitude d̂dJK
p rep-

resents a P-wave departing from the interface J and travelling in the positive direction of zJK ; and that with
âaJKp represents a P-wave arriving at the interface J and traveling in the negative direction of z

JK . Similarly,

d̂dJK
s a SV-wave departing from the interface J and âa

JK
s a SV-wave arriving at the interface J. âa

JK
p , d̂d

JK
p , âa

JK
s and

d̂dJK
s are unknown functions of j and x, which shall be determined by boundary conditions and the con-
tinuity conditions at the interface.

If a point force or a vertical line force with time function f ðtÞ is placed at x ¼ 0, z ¼ zJ , the origin of two
local coordinates, the source function may be represented by �dðx� 0Þdðz� zJ Þf ðtÞ. The displacements
(ux; uz) and the shear stress rxz should be continuous at the interface, but the normal stress rzz will jump

across the interface. We can obtain four continuity conditions at the interface

ûuJðJþ1Þx ðk; 0;xÞ þ ûuJðJ�1Þx ðk; 0;xÞ ¼ 0;

ûuJðJþ1Þz ðk; 0;xÞ þ ûuJðJ�1Þz ðk; 0;xÞ ¼ 0;

r̂rJðJþ1Þ
xz ðk; 0;xÞ � r̂rJðJ�1Þ

xz ðk; 0;xÞ ¼ 0;

r̂rJðJþ1Þ
zz ðk; 0;xÞ � r̂rJðJ�1Þ

zz ðk; 0;xÞ ¼ �F ðxÞ; J ¼ 1; 2; . . . ;N � 1:

ð13Þ

Substituting Eqs. (9) and (12) into the previous equations, we obtain a set of equations for the un-

known coefficients âaJðJ�1Þl , âaJðJþ1Þl , d̂dJðJ�1Þ
l and d̂dJðJþ1Þ

l (l ¼ p, s), which is expressed in matrix form as
follows:

AJ âaJ þDJ d̂dJ ¼ ĝgJ ðk;xÞ; ð14Þ
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where âaJ and d̂dJ are unknowns vectors, AJ and DJ are 4� 4 matrices, and ĝgJ is an external force

vector, i.e.

âaJ ¼ ðâaJðJ�1Þp ; âaJðJ�1Þs ; âaJðJþ1Þp ; âaJðJþ1Þs ÞT;
d̂dJ ¼ ðd̂dJðJ�1Þ

p ; d̂dJðJ�1Þ
s ; d̂dJðJþ1Þ

p ; d̂dJðJþ1Þ
s ÞT;

AJ ¼

�k �bj k bjþ1
aj �k �ajþ1 k

ljðb2j � k2Þ �2ljkbj �ljþ1ðb2jþ1 � k2Þ 2ljþ1kbjþ1

�2ljkaj �ljðb2j � k2Þ 2ljþ1kajþ1 ljþ1ðb2jþ1 � k2Þ

2664
3775;

DJ ¼

�k �bj k bjþ1
�aj �k ajþ1 k

ljðb2j � k2Þ 2ljkbj �ljþ1ðb2jþ1 � k2Þ �2ljþ1kbjþ1

2ljkaj �ljðb2j � k2Þ �2ljþ1kajþ1 ljþ1ðb2jþ1 � k2Þ

2664
3775;

ĝgJ ðk;xÞ ¼ ð0; 0; 0;�F ðxÞÞT:
Obviously, both components of the force vector vanish when no source is at the interface. Solving d̂dJ in

terms of unknowns vector âaJ and a given source vector ĝgJ , we find

d̂dJ ¼ SJ âaJ þ ŝsJ ðk;xÞ; J ¼ 1; 2; . . . ;N � 1; ð15Þ
where

SJ ¼ �ðDJÞ�1AJ ¼

Rppjj Rspjj T ppðjþ1Þj T spðjþ1Þj
Rpsjj Rssjj T psðjþ1Þj T ssðjþ1Þj

T ppjðjþ1Þ T spjðjþ1Þ Rppðjþ1Þðjþ1Þ Rppðjþ1Þðjþ1Þ
T psjðjþ1Þ T ssjðjþ1Þ Rppðjþ1Þðjþ1Þ Rssðjþ1Þðjþ1Þ

2666664

3777775 ð16Þ

and

ŝsJðk;xÞ ¼ ðDJÞ�1ĝgJðk;xÞ: ð17Þ
The matrix SJ is called the scattering matrix at Jth interface, the element of which relates an incident

wave (arrival) to the transmitted or reflected wave (departure) in Jth interface. The ŝsJ is called the source
wave vector, which represents the waves emitted by the source at the interface. The scattering of waves at

the interface is shown in Fig. 2. The reflection and transmission coefficients in the matrix SJ are given by

Fig. 2. Scattering of waves at the interface J.
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Rpp ¼ ½ðl1 � l3Þðm2 þ m4Þ � ðl2 þ l4Þðm1 � m3Þ�=D;
Rps ¼ 2eðm4l2 � l4m2Þ=D;
T pp ¼ 2ðm2 þ m4Þðkl1 � b1l2Þ=kD;
T ps ¼ 2eðl2 þ l4Þða1m3 � km4Þ=kD;
Rsp ¼ 2eðm3l1 � l3m1Þ=D;
Rss ¼ ½ðl1 þ l3Þðm4 � m2Þ � ðl4 � l2Þðm1 þ m3Þ�=D;
T sp ¼ 2eðm3 þ m1Þðb1l2 � kl1Þ�=kD;
T ss ¼ 2ðl1 þ l3Þða1m3 � km4Þ�=kD;

where

D ¼ ðl1 þ l3Þðm2 þ m4Þ þ ðl2 þ l4Þðm1 þ m3Þ:
The elements l1; l2; . . . ;m4 may be expressed in terms of shear modulus lj and wave numbers k, ai, bi as

defined in Eqs. (7a) and (7b) where the subscript ið¼ 1; 2Þ is appended to indicate the source (1) and the
adjacent (2) layer:

l1 ¼ �llðk2 � b22Þ � 2k2;

l2 ¼ k=b1½�llðk2 � b22Þ � ðk2 � b21Þ�;

l3 ¼ a2=a1½ðk2 � b21Þ � 2�llk2�;
l4 ¼ 2ka2ð1� �llÞ;
m1 ¼ 2kb2ð1� �llÞ;

m2 ¼ b2=b1½k2 � b21 � 2�llk2�;

m3 ¼ k=a1½�llðk2 � b22Þ � ðk2 � b21Þ�;

m4 ¼ �llðk2 � b22Þ � 2k2;

where �ll ¼ l2=l1. The factor e is þ1 or �1 according to the downgoing or upgoing incident wave.
When the media of layer J and layer (J þ 1) are same, nonzero elements of the matrix SJ are only

T pp ¼ T ss ¼ 1.
If the layered solid is bounded at the top, z ¼ Z0 ¼ 0, and at the bottom, z ¼ ZN , both the wave vectors âa

and d̂d degenerate into a vector with two elements. The scattering matrix S0 and SN also degenerate into a

4� 4 matrices. Particularly, in the case that the top is a free surface and the bottom is a rigid plane, they can
be derived by taking appropriate limit values of density and shear wave speed for one adjacent layer, zero

density and zero speed for upper layer of the free surface, and infinite density and infinite wave speed for

lower layer of the rigid plane. The limit values are

d̂d0 ¼ S0âa0 þ ŝs0ðk;xÞ;
d̂dN ¼ SN âaN þ ŝsNðk;xÞ:

ð18Þ

The transmission coefficients are zero and the reflection coefficients at a free surface are

Rpp ¼ ½4k2ab � ðk2 � b2Þ2�=D; Rss ¼ Rpp;

Rps ¼ e4kaðk2 � b2Þ=D; Rsp ¼ 4ekbðk2 � b2Þ=D;

where D ¼ 4k2ab þ k2 � b2
� 
2

.
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While the transmission coefficients are zero and the reflection coefficients at a fixed surface are

Rpp ¼ ðab � k2Þ=D; Rss ¼ Rpp;

Rps ¼ 2ka=D; Rsp ¼ �2kb=D;

where D ¼ ab þ k2.
If a line of vertical forces acts at the free surface, the continuity condition will be replaced by the

boundary condition, rzz ¼ �dðxÞf ðtÞ and rxz ¼ 0 at z ¼ 0. If there is no point force or line of vertical force
at the rigid surface, the source wave vector ŝsN vanishes.
If the bottom plane z ¼ ZN�1 is bounded by a semi-infinite space, we let the plane z ¼ ZN recede to

infinity and the thickness hn approach infinite. From the radiation condition, the wave numbers in the semi-

infinite space becomes imaginary, an ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2=ðcpÞ2n

q
and bn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2=ðcsÞ2n

q
, and the wave amplitude

d̂dðN�1ÞN
p , d̂dðN�1ÞN

s , âaNðN�1Þ
p and âaNðN�1Þ

s must vanish. The elements of the 4� 4 scattering matrix SN�1 should be
modified accordingly.

3.2. Global scattering matrix for the layered solid

Combining 4N equations in Eqs. (17) and (18), we can construct a system of equations for the entire

layered solid in the following form:

d̂d0

d̂d1

d̂d2

..

.

d̂dN�1

d̂dN

0BBBBBBBBB@

1CCCCCCCCCA
¼

S0 0 0 � � � 0 0

0 S1 0 � � � 0 0

0 0 S2 � � � 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 � � � SN�1 0

0 0 0 � � � 0 SN

2666666664

3777777775

âa0

âa1

âa2

..

.

âaN�1

âaN

0BBBBBBBBB@

1CCCCCCCCCA
þ

ŝs0

ŝs1

ŝs2

..

.

ŝsN�1

ŝsN

0BBBBBBBBB@

1CCCCCCCCCA
: ð19Þ

In compact notation, the previous equation is written as

d̂d ¼ Sâaþ ŝsðk;xÞ: ð20Þ

The vector with 4N elements, d̂d, which is named the global departing wave vector, represents completely

waves departing from all interfaces downward and upward, and the vector âa, which is named the global
arriving wave vector, represents completely waves arriving at all interfaces upward and downward. The

square matrix S that is a block-diagonal matrix of dimension 4N is called the global scattering matrix. The

vector ŝs with 4N elements, which is called the global source vector, represents waves emitted from sources

located at x ¼ 0, z ¼ ZJ (J ¼ 0; 1; 2; . . . ;N ).
Notice that two local coordinates ðxJðJ�1Þ; zJðJ�1ÞÞ and ðxJðJþ1Þ; zJðJþ1ÞÞ are used to analyze waves

arriving and departing from the same interface, the amplitude coefficients are treated separately from

the phase functions. In this section, the elements of SJ represent the reflection or transmission co-

efficients for waves incident at the interface J are the same as those calculated from a single coor-
dinate. Since both vectors âa and d̂d are unknown quantities, we need an additional equation related d̂d

to âa.
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4. Reverberation matrix

4.1. Phase matrix

The additional equation is supplemented by first noting that a wave departing from one side of the layer

becomes the wave arriving at another side of the same layer. The amplitudes for the waves at both sides,

however, differ by a phase shift factor as follows:

âaJðJ�1Þp ¼ eiajhj d̂dðJ�1ÞJ
p ; âaJðJ�1Þs ¼ eibjhj d̂dðJ�1ÞJ

s ;

d̂dJðJ�1Þ
p ¼ e�iajhj âaðJ�1ÞJp ; d̂dJðJ�1Þ

s ¼ e�ibjhj âaðJ�1ÞJs ; J ¼ 1; 2; . . . ;N � 1:
ð21Þ

Eq. (21) can be expressed by âaj ¼ PðhjÞd̂dj, where the local phase matrix is

PðhjÞ ¼ eiajhj 0

0 eibjhj

� �
:

We introduce a new local vector at Jth interface, d̂d�j, and a new global vector d̂d� for the departing

waves as

d̂d�j ¼ ðd̂dðJ�1ÞJ
p ; d̂dðJ�1ÞJ

s ; d̂dðJþ1ÞJ
p ; d̂dðJþ1ÞJ

s ÞT;

d̂d� ¼ ðd̂d�0; d̂d�1; d̂d�2; . . . ; d̂d�ðN�1Þ; d̂d�N ÞT;
ð22Þ

here d̂d�0 ¼ fd̂d10p ; d̂d10s gT, d̂d�N ¼ fd̂dðN�1ÞN
p ; d̂dðN�1ÞN

s gT. Furthermore, all elements of wave vector âa are related to
those of the vector d̂d� as

âa ¼ Pðj; h;xÞd̂d�; ð23Þ

where total phase shift matrix Pðk; h;xÞ or PðhÞ (4N � 4N ) is a block-diagonal matrix, which is given by

PðhÞ ¼

Pðh1Þ 0

0

0 Pðh1Þ
. .
.

0 PðhnÞ 0

0 PðhnÞ

266666664

377777775: ð24Þ

4.2. Permutation matrix

The global vectors d̂d� and d̂d contain the same elements but sequenced being different order. We may

express this equivalence through a permutation matrix U,

d̂d� ¼ Ud̂d; ð25Þ
where U is a 4N � 4N block-diagonal matrix composed of N same 4� 4 sub-matrix u and other vanishing
elements as

U ¼

u 0 � � � 0

0 u � � � 0

..

. ..
. . .

. ..
.

0 0 � � � u

2664
3775; u ¼

0 0 1 0

0 0 0 1

1 0 0 0
0 1 0 0

2664
3775:
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4.3. Reverberation matrix

Substituting Eq. (25) into Eq. (23), we find the second equation that relates the vectors âa and d̂d as

âa ¼ PðhÞUd̂d: ð26Þ
Solving Eqs. (20) and (26) simultaneously, we finally obtain

d̂d ¼ ½I� R��1ŝsðk;xÞ; ð27Þ

âa ¼ PðhÞU½I� R��1ŝsðk;xÞ; ð28Þ
where we have introduced the reverberation matrix R defined by

Rðk;xÞ ¼ SPðhÞU: ð29Þ
The matrix ½I� Rðk;xÞ��1 relates the response of the layered medium to the excitation ŝsðk;xÞ in the

frequency–wave number domain. The dispersion relation for the resonant waves in the layered medium is

given by

det½I� Rðk;xÞ� ¼ 0: ð30Þ
The determinant in Eq. (30) which is based on evaluation of scattering waves at each interface is different

from that derived by Thomson (1950) and Haskell (1953) method which is based on evaluation of the wave

propagating from one interface to another. They should, however, yield the same numerical results for the

dispersion relations in x–k plane.
The frequency response for monochromatic waves in the layered medium is determined by completing

inverse Fourier transform in Eqs. (6a) and (6b), after substituting of âa and d̂d into Eq. (9). The transient
response of the same medium is determined by completing inverse Fourier transform.

5. Transient waves in the layered medium

Once the coefficient vectors d̂d and âa are known from Eqs. (27) and (28), the complete list of displacements

and stresses in frequency domain will be expressed as

cWWðk; z;xÞ ¼ Bðk; z;xÞ�½I� Rðk;xÞ��1ŝsðk;xÞ; ð31Þ

where

cWWðk; z;xÞ ¼ fŵwðk; z01;xÞ; ŵwðk; z10;xÞ; . . . ; ŵwðk; zðN�1ÞN ;xÞ; ŵwðk; zNðN�1Þ;xÞgT;

ŵw ¼ ðûux; ûuz; r̂rxz; r̂rzzÞT; zJðJ�1Þ ¼ hj � zðJ�1ÞJ ;

and vertical coordinate vector of receivers

z ¼ fz01; z10; z12; z21; . . . ; zðN�1ÞN ; zNðN�1ÞgT: ð32Þ
The matrix B, which is called the receiver matrix, is combined by the coefficients of the wave vectors in

Eq. (9).

Applying twice inverse Fourier transforms for variables x and t, we can thus obtain the transient re-

sponses at N receivers to the sources, i.e.

Wðx; z; tÞ ¼ 1

ð2pÞ2
Z 1

�1
e�ixt dx

Z 1

�1
cWWðk; z;xÞeikx dk ð33Þ
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It is assumed that no two receivers are located in same layer. We rewrite Eq. (33) in detail as

Wðx; z; tÞ ¼ 1

ð2pÞ2
Z 1

�1
e�ixt dx

Z 1

�1
Bðk; z;xÞ½I� Rðk;xÞ��1ŝsðk;xÞeikx dk: ð34Þ

For each element of wave vectors in Eq. (34), the double integral representation of the wave displacements

and stresses can be calculated by either the traditional spectra method or the ray method, both first were
proposed by Pekeris (1955).

5.1. Generalized ray-integrals

The method of reverberation-ray matrix is particularly suitable for ray method, if we expand the transfer

function in a Neumann series

½I� R��1 ¼ Iþ Rþ R2 þ � � � þ RM þ ½I� R��1RMþ1: ð35Þ

Substituting Eq. (35) into Eq. (34),

Wðx; z; tÞ ¼
XM
m¼0

WðmÞðx; z; tÞ þW
ðMþ1Þ
R ðx; z; tÞ; ð36Þ

where

WðmÞðx; z; tÞ ¼ 1

ð2pÞ2
Z 1

�1
e�ixt dx

Z 1

�1
Bðk; z;xÞRmŝsðk;xÞeikx dk ð37Þ

and

WðMþ1Þðx; z; tÞ ¼ 1

ð2pÞ2
Z 1

�1
eixt

Z 1

�1
Bðk; z;xÞ½I� R��1RMþ1ŝsðk;xÞeikx dk: ð38Þ

The integrals in the summation can thus be evaluated term by term to obtain the ‘‘generalized-ray so-

lution’’. Wð0Þðx; z; tÞ, the integrand of which have factor R0, contains the waves originally generated by the
applied forces, which propagate away from the sources to the receivers at ðx; zÞ.Wð1Þðx; z; tÞ , the integrand
of which has factor R, contains the first set of reflections and transmissions of the source waves in the

layered solid. In general, WðmÞðx; z; tÞ, the integrand of which have factor Rm, contains the set of m times

reflections and transmissions of the sources waves in the layered solid. The double ray integrals can be

calculated by applying the Cagniard method or by numerical integration (Cagniard, 1939; M€uuller, 1968,
1969; Pao and Gajewski, 1977).

To illustrate the ray paths for waves propagating from the source to a receiver, we show in Fig. 3 the

R0;R1;R2;R3;R4;R5 groups in the top three layers of layered medium. The source which generated both P-
waves and S-waves is applied at the origin and a receiver is situated somewhere in the middle of first layer.

The Fig. 4a shows the first group R0 and second group R1, the latter being reflected once at the free surface.

Fig. 4b, c and d show the third group R2, the fourth group R3 and the fifth group R4 respectively. Fig. 4e

shows the sixth group R5 that is composed of four subgroups, each ray in the group being reflected or

diffracted (transmitted) five times. Since there is a mode conversion, P to S or S to P, at each reflection or
diffraction, there are 4� 26 ¼ 256 rays in this group. The partial wave along each ray path in a group is
represented by one ray integral in Eq. (33), which can be evaluated numerically.
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5.2. Fast Hankel transform and fast Fourier transform

The double-integrals for the generalized rays are computed by applying the fast Hankel transform and

the fast Fourier transform for axisymmetric problems. The fast Fourier transform is known. Here we in-

troduce the fast Hankel transform only.

The Hankel transform is defined as

f ðrÞ ¼
Z 1

0

f̂f ðkÞJ0ðkrÞkdk: ð39Þ

Let r ¼ r0ex, k ¼ k0e�y , then substitute them into the formula (39), we have

f ðr0exÞ ¼ k20

Z 1

�1
e�2y f̂f ðr0e�yÞJ0ðr0k0ex�yÞdy: ð40Þ

Fig. 3. Rays with reverberations: (a) first ray group for R0 and second ray group for R1, (b) third ray group for R2, (c) fourth ray group

for R3, (d) fifth ray group for R4, (e) sixth ray group for R5.
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The right side of the above formula is considered as a convolution of two functions e�2y f̂f ðr0e�yÞ and
k20J0ðr0k0exÞ, which can be calculated approximately by the numerical algorithm based on FFT. Thus we can
obtain N discrete samples approximately as

f ðr0ejdÞ ¼
XN
m¼0

bmcj�m; j ¼ 0; . . . ;N � 1; ð41Þ

where N is the integer power of 2, x; y ¼ jd, j ¼ 0; . . . ;N � 1.

bm ¼ 0; m ¼ �N ; . . . ;�1;
e�2mdf̂f ðr0e�mdÞ; m ¼ 0; . . . ;N � 1;

�
and cm�j ¼ k20dJ0ðr0k0eðm�jÞdÞ:

According to Sample theorem and accuracy request, parameters r0; k0;N ; d will be chosen. In general, we
can choose r0 ¼ rmax, rmin ¼ e�ðN�1Þd, k0 ¼ kmax, kmin ¼ k0eðN�1Þd, where rmin and rmax are minimum and
maximum of r, kmin and kmax are minimum and maximum of k. They must satisfy the constrain conditions:
rmaxkmind < p and rminkmaxd < p. For the inverse Hankel transform of the integral Eqs. (10c) and (10d) can
be computed by using FHT. Based on the above algorithm, a program is made to compute transient re-

sponse in the stratified solids.

6. Waves in a three layered laminate––an example

Recently, Achenbach and Xu (1999) analyzed point-axisymmetric waves in a plate using elastodynamic

reciprocity. An appropriate orthogonality relation with a dummy wave mode determines the coefficients of

an expansion in Lamb wave modes of the wave motion generated in an infinite elastic layer by a point load

normal to the faces of the plate. In this paper, a laminated plate of three layers with equal thickness h,

shown in Fig. 4, is considered as an example. The top and bottom layers are made of the same material with

Lame constants k1, l1 (k1 ¼ l1 in value), and mass density q1. The middle layer is more rigid with k2 ¼ 2k1,
k2 ¼ l2, and q2 ¼ q1. A vertical force of magnitude F0 and Heaviside function of time, �F0HðtÞdðrÞ=2pr,
acts at a point of the top surface, r0 ¼ 0, z0 ¼ 0. Two receivers are set at points A (2.39 h, 0.05 h) and B

Fig. 4. A laminate with a source at (0, 0) and receivers at A (2.39 h, 0.05 h) and B (2.39 h, 2.95 h).
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(2.39 h, 2.95 h) respectively. The responses that the normalized vertical displacement Uz ¼ uz=ðF0=l1ph1Þ
varies with the normalized time s ¼ c1t=h are shown in Figs. 5 and 6, where c21 ¼ ðk1 þ 2l1Þ=q1.
Fig. 5a shows the first ray group directly from the source to the receiver A. The P- and S-wave arrive at

the receiver A respectively when s ¼ 2:39 and s ¼ 4:14, the first peak appears at s � 4:50, which means the
arrival of the Rayleigh surface wave. The result is similar to that shown by Pekeris (1955) who calculated

the exact surface response of a half space due to a point force applied at the surface. Our result does not

show the sharp rise and fall of the displacement at the arrival time of Rayleigh surface wave because the

receiver A is slightly below the free surface. The response due to partial waves of the fourth group for R3

Fig. 5. Displacement uz at receiver A: (a) the first ray group, (b) the fourth ray group, (c) the sixth ray group, (d) summation of first
nine ray groups (more 7000 rays).

Fig. 6. Displacement uz at receiver B: (a) the third ray group, (b) summation of first nine ray groups (more 7000 rays).
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and the sixth for R5 are shown respectively in Fig. 5b and c. The paths of rays from the source to the

receiver A are similar with those shown in Fig. 3c and e. Each ray is identified by the mode of each segment

(P or S) and the layer (subscript 1, 2, or 3). The ray of the fourth group with two downward modes, p1, p2
and two upward modes P2, P1, arrives at the receiver A first at s ¼ 3:96. Similarly, the sixth ray group
contains 4� 26 generalized rays with six wave segments from the source to the receiver A. The first arrival
ray in this group is the ray with modes, p1p2P2p2P2P1, here P-wave speed in the layer 2 is twice of the P-

wave speed in layers 1 and 3. The normalized arrival time is s ¼ 5:64. The summation of the first nine
groups is shown in Fig. 5d, which is the summation of more than 7000 generalized rays.

In the Fig. 6, the normalized displacement at the receiver B is shown. The Fig. 6a exhibits the third ray

group arriving at B point, which includes eight rays from the source to the receiver B. The p1p2p3 wave

arrives at B point at s ¼ 3:43. The summation of the first nine ray groups arriving at the point B contains
almost 7000 rays.
For the displacement on or near the top surface of plate, the first ray group includes P-wave, S-wave and

Rayleigh wave. The k-domain response for Rayleigh wave at a fixed frequency will asymptotes to a con-

stant value when k approaches to infinity (Weaver et al., 1996), so the computational truncation by FFT

and FHT will make some error for the first ray group of response on or near the top surface of plate. It is

the reason that there exists a small signal before the arrival of the P wave in Fig. 5a. In the Fig. 6, the similar

sinuousness in the response near the bottom does not appear.

7. Conclusion

In this paper we have extended the method of reverberation-ray matrix, which was developed originally
for a framed structure (Howard and Pao, 1998) and modified for acoustic (dilatation, P wave) in layered

liquid (Pao et al., 2000), to analyze elastic waves in layered solid. The additional consideration of distor-

tional waves (S-waves) presents low difficulty in the mathematical formulation of the matrix. The final

expressions for the transient waves in the entire medium are expressed in the form of double integrals over

the frequency and transverse wave numbers (Eqs. (36)–(38)), and the integrand contains the matrix

½I� R��1s, where R is the reverberation matrix and s is a column matrix representing waves radiated from a
point or a line source. Such a formulation enables one to expand the inverse of matrix ½I� R� into a power
series of R, and to convert the double integral with poles to a series of integrals, known as the ray-integrals.
Each term of ray-integrals which is regular within the range of integration represents a group of partial

waves transmitting from the source to a receiver along a multi-reflected ray-path (including P to S and S to

P mode conversion). Each ray-integral in expansion can then be identified with the ray-integrals in series of

generalized-rays, which could be evaluated precisely by applying the Cagniard�s de-Hoop method (Pao and
Gajewski, 1977). With the advance of digital computer and numerical method, the ray-integrals, a double

integral in frequency and wave number, can be evaluated numerically by applying an algorithm (FHT) in

inverse Hankel transform and another one (FFT) in inverse Fourier transform.

The major advantage of applying the reverberation-ray matrix is to have all partial waves that are
propagating from the source to a receiver along all possible paths grouped systematically, and to have them

sorted automatically into ordered groups according to the power of RN , the numbers of scatterings at

interfaces of the layered solid. The systematic sorting of the rays groups in matrix form renders the method

very effective in the computer programming for calculating large number of ray-integrals. This is illustrated

by the example of a three-layered laminated plate under the impact of a vertical force at the surface.

Transient responses at the opposite side of the plate are determined by numerically evaluating nine ray

groups including Is;Rs;R2s; . . . ;R8s. As large as 7000 number of rays are summed and then integrated
numerically each time. It would be unthinkable to handle such a large number of generalized-ray integral
by applying the Cagniard�s de-Hoop method.
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